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Abstract

We address the problem of finding Abelian instantons of finite energy on the Euclidean Schwarz-
schild manifold. This amounts to construct self-dualL2 harmonic 2-forms on the space. Gibbons
found a non-topologicalL2 harmonic form in the Taub-NUT metric, leading to Abelian instantons
with continuous energy. We imitate his construction in the case of the Euclidean Schwarzschild
manifold and find a non-topological self-dualL2 harmonic 2-form on it. We show how this gives
rise to Abelian instantons and identify them withSU(2)-instantons of Pontryagin number 2n2 found
by Charap and Duff in 1977. Using results of Dodziuk and Hitchin we also calculate the fullL2

harmonic space for the Euclidean Schwarzschild manifold. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

An Abelian instanton is a self-dual solution to Euclidean Maxwell’s equations. In the case
of the Taub-NUT metric onR4 such a non-trivial solution was found by Eguchi and Hanson
[6] in 1979. In mathematical terms, a self-dual solution to Euclidean Maxwell’s equations
with finite energy is a self-dualL2 harmonic 2-form with integer cohomology class. In this
context the Eguchi–Hanson solution was reinvented by Gibbons [7] in 1996. Motivated by
Sen’sS-duality conjecture he constructed a non-topological self-dualL2 harmonic 2-form
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in the Taub-NUT metric. In general, we call a non-trivialL2 harmonic form on a complete
Riemannian manifoldnon-topologicalif either it is exact or not cohomologous to a com-
pactly supported differential form. Roughly speaking the existence of non-topologicalL2

harmonic forms are not predictable by topological means (cf. [13]). A curious feature of the
above mentioned form in the Taub-NUT metric is that living on a space with no topology, it
is cohomologically trivial, producing a family of Abelian instantons with continuous energy.

Gibbons’ construction is geometric in nature; indeed theL2 harmonic 2-form is obtained
as the exterior derivative of a 1-form dual to a Killing field of some naturalU(1)-action. In
1999, Hitchin [10] completed the proof of Sen’sS-duality conjecture in the Taub-NUT case
by showing that thewholeL2 harmonic space is spanned by the Eguchi–Hanson–Gibbons
2-form.

In this note we imitate this construction of Gibbons for the case of the Euclidean
Schwarzschild metric. It is a Ricci-flat metric onR2 × S2 [14] and was constructed by
Hawking [9] in 1976 as the Wick rotation of the Schwarzschild space–time.

We show that the rotation on theR2 part induces a Killing field such that the exterior
derivative of the dual 1-form has finite energy. On a Ricci-flat manifold it follows from
Killing’s equations that the form obtained in this way solves Maxwell’s equations [14].
However, unlike the Taub-NUT case, this form is not self-dual (this fact is related, cf.
[10, Theorem 4]), to the observation that the Euclidean Schwarzschild manifold is not
hyperkähler while the Taub-NUT manifold is). Self-dualizing the form produces a self-dual
L2 harmonic 2-form, which is not trivial cohomologically (though it is non-topological,
since onM every compactly supported 2-form is exact). Thus in order to obtain Abelian
instantons, we have to quantize the form to have integer cohomology class. In this way we
get Abelian instantons lying onU(1)-bundles of first Chern numbersn and first Pontryagin
numbers 2n2.

On the other handSU(2)-instantons on the Euclidean Schwarzschild manifold were
constructed by Charap and Duff [2] in 1977. They consideredO(3)-invariant instantons,
where the action ofO(3) is induced from the symmetry group ofS2. In this way their ansatz
was reduced to a system of three relatively simple partial differential equations. They were
able to find three kind of solutions of this system. The first was the trivial flat connection;
the second the non-trivial “metric connection” of second Chern number 1 obtained earlier
in [3]; and the third was a family of solutions which gave rise to instantons of second Chern
number 2n2. Apparently they refer to this last family as non-Abelian dyons and give no
geometrical interpretation.

RepresentingU(1) as a subgroup ofSU(2) we obtainSU(2) instantons with second Chern
numbers (i.e. instanton numbers) 2n2 from our integerL2 harmonic forms. The main result
of the present note is that this family coincides with the third group ofSU(2)-instantons
found by Charap and Duff. In spite of a few works dealing with or mentioning the Charap–
Duff instantons [8,11,12], apparently its Abelian character has not been recognized yet.

Using a recent result of Hitchin [10] we conclude our paper by showing that there are no
other Abelian instantons, i.e. self-dualL2 harmonic 2-forms on the Euclidean Schwarzschild
manifold. Indeed with the help of a result of Dodziuk [4] we are able to determine thewhole
L2 harmonic space.
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2. Construction of the Abelian instanton

Hawking invented the Euclidean Schwarzschild manifold to argue for the thermal nature
of particle creation at a Schwarzschild black hole.

Mathematically the Euclidean Schwarzschild 4-manifoldM is a complete solution to
the Euclidean vacuum Einstein’s equations with zero cosmological constant, and has the
non-trivial topologyM ∼= R2 × S2. In other words, it is a Ricci-flat manifold. It is not a
gravitational instanton (such as e.g. the Taub-NUT metric or the Eguchi–Hanson metric) in
that its curvature tensor is not self-dual. Thus it is not hyperkähler either, whose property will
affect our considerations (cf. [10, Theorem 4]) in the form of the existence of non-self-dual
L2 harmonic forms onM.

According to (14.3.11) of [14], we have a particularly nice form of the metricg on a dense
open subset(R2 \ {O}) × S2 ⊂ M ∼= R2 × S2 of the Euclidean Schwarzschild manifold.
It is convenient to use polar coordinates(r, τ ) onR2 \ {O} in the ranger ∈ (2m, ∞) and
τ ∈ [0, 8πm), wherem > 0 is a fixed constant. The metric then takes the form

ds2 =
(

1 − 2m

r

)
dτ2 +

(
1 − 2m

r

)−1

dr2 + r2 dΩ2,

where dΩ2 stands for the line element of the unit roundS2. In sphere coordinatesΘ ∈ (0, π)

andφ ∈ [0, 2π) it is

dΩ2 = dΘ2 + sin2Θ dφ2

on the open coordinate chart(S2 \ ({S}∪ {N})) ⊂ S2. Consequently the above metric takes
the following form on the open, dense coordinate chartU := (R2 \ {O}) × (S2 \ ({S} ∪
{N})) ⊂ M ∼= R2 × S2:

ds2 =
(

1 − 2m

r

)
dτ2 +

(
1 − 2m

r

)−1

dr2 + r2(dΘ2 + sin2Θ dφ2). (1)

Despite the apparent singularity of the metric at the originO ∈ R2, it can be extended
analytically to the wholeR2 × S2 as demonstrated in [14, p. 407].

TheU(1)-action defined byτ 7→ τ + 4mλ for eiλ ∈ U(1) leaves this metric invariant,
and thus defines the Killing field

X := 1

4m

∂

∂τ
,

which (together with theU(1)-action itself) clearly extends to a Killing field on the whole
Euclidean Schwarzschild manifold, which we will also denote byX.

Now consider the differential 1-formξ := g(X, ·) dual toX. In our coordinate chartU ,
it takes the form

ξ = 1

4m

(
1 − 2m

r

)
dτ.

General considerations about Killing’s equations on a Ricci-flat manifold yield that dξ is
a harmonic 2-form, which on a complete manifold is equivalent to saying that it is closed
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and co-closed. For a proof see [14, pp. 442–443]. In our situation we can check it by hand
that our form

dξ = − 1

2r2
dτ ∧ dr

is co-closed. For this we need to calculate∗dξ . Evoking the local coordinate representation
of the general Hodge operation (e.g. [1, p. 5]), the Hodge-operation∗ : Ω2(M) → Ω2(M)

on the Euclidean Schwarzschild manifold(M, g) can be written as

∗dτ ∧ dr = r2 sinΘ dΘ ∧ dφ,

∗dΘ ∧ dφ = 1

r2 sinΘ
dτ ∧ dr,

∗dτ ∧ dΘ = −
(

1 − 2m

r

)−1

sinΘ dr ∧ dφ,

∗dr ∧ dφ = −
(

1 − 2m

r

)
1

sinΘ
dτ ∧ dΘ,

∗dτ ∧ dφ =
(

1 − 2m

r

)−1 1

sinΘ
dr ∧ dΘ,

∗dr ∧ dΘ =
(

1 − 2m

r

)
sinΘ dτ ∧ dφ.

The orientation is fixed such thatετrΘφ = 1. From here we can see that

∗dξ = −1
2 sinΘ dΘ ∧ dφ

is closed. Thus dξ is indeed harmonic. Now we show that it isL2 by calculating the
Maxwell action of it: using the parameterization of the Euclidean Schwarzschild manifold
given above we find

‖dξ‖2
L2(M)

= ‖ ∗ dξ‖2
L2(M)

= 1

8π2

∫
M

dξ ∧ ∗dξ

= 1

8π2

∫ 2π

0

∫ π

0

∫ ∞

2m

∫ 8πm

0

sinΘ

4r2
dτ dr dΘ dφ = 1

2
. (2)

In this way we have produced a two-dimensional space ofL2 harmonic 2-forms onM
spanned by dξ and∗dξ , and a one-dimensional subspace of (anti)self-dualL2 harmonic
forms spanned byω± := dξ ± ∗dξ . From now on, without loss of generality we focus on
self-dual forms only, i.e. we will use the notationω := ω+. Hence the self-dual form looks
like

ω = −1

2

(
1

r2
dτ ∧ dr + sinΘ dΘ ∧ dφ

)
(3)

onU . By (2), the Maxwell action orL2-norm of the self-dualω is given by

‖ω‖2
L2(M)

= 1

8π2

∫
M

ω ∧ ω = 1

8π2

∫
M

2 dξ ∧ ∗dξ = 1. (4)
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The self-dual 2-formω is not trivial topologically; indeed its cohomology class can be
easily identified with the first Chern class of theU(1)-bundleH whose restrictionH |S2 is
nothing but the HopfU(1)-bundle (i.e. the positive generator ofH 2(S2,Z)) through the
isomorphismH 2(R2 × S2,Z) ∼= H 2(S2,Z) via the integral

− 1

2π

∫
S2

ω|S2 = − 1

2π

∫
S2

∗ dξ = 1

4π

∫ 2π

0

∫ π

0
sinΘ dΘ dφ = 1, (5)

where we embeddedS2 into M asS2 ∼= {p} × S2 ⊂ M ∼= R2 × S2, where for the sake of
simplicity p ∈ R2 differs from the origin.

According to (5),(1/2π)ω ∈ H 2(M,Z) is an integer form, thus there is a connectionA1

on H , whose curvature satisfiesFA1 = ωk, where we used the identificationu(1) ∼= kR.
Furthermore it is unique, sinceπ1(M) = 1, consequently any flat connection must be
the trivial one. Similarly theU(1)-bundleHn admits a unique connectionAn such that
FAn = nωk.

Now we write downAn locally on two charts and explain how to glue them together: Let
us denote byH± the northern and southern hemispheres ofS2 respectively, in other words,
H+ is the set of points, whereΘ ≤ π/2, andH− is the set, whereΘ ≥ π/2. Consider the
coordinate chartsU± := R2 × H± of the spaceM = R2 × S2. Clearly,M = U+ ∪ U−

andU+ ∩ U− ∼= R2 × S1 is given by the points satisfyingΘ = π/2. By integrating (3),
in our coordinate chartU and an appropriate trivialization ofHn, the connectionAn takes
the form (c1, c2 are arbitrary real constants):

A±
n = n

2

((
c1 − 1

r

)
dτ + (c2 + cosΘ) dφ

)
k.

For this to extend to the North pole(Θ = 0) and respectively to the South pole(Θ = π),
we need to choosec2 = −1 onU+ and respectivelyc2 = 1 onU−. Thus our connection
An takes the following shape on the chartsU±:

A±
n = n

2

((
c1 − 1

r

)
dτ + (∓1 + cosΘ) dφ

)
k. (6)

Note that these connection forms are regular alongU+ ∩U− and are related by the Abelian
gauge transformation

A+
n − A−

n = −n dφ k

given by e−nφk ∈ U(1) alongU+ ∩ U−. We recognize the above connections as theL2

harmonic generalizations for the Euclidean Schwarzschild case of the connections appearing
in the well-known bundle-theoretic description of the Dirac magnetic monopole, see e.g.
[5, pp. 231–232]. The extra term(c − 1/r) dτ can be interpreted as a scalar potential that
will cause our solutions to carry electric charge.

Consider now the associatedU(2)-bundlePU(2)
∼= Hn ⊕ H−n, via the diagonal em-

bedding ofU(1) × U(1) ⊂ U(2), and the associated connectionBn = An ⊕ A−n with
curvature formFAn ⊕ FA−n on it. SinceH 4(M,Z) ∼= 0, the principalU(2)-bundlePU(2)

of Hn ⊕ H−n is trivial. Moreover, its determinantU(1)-bundle is trivial and thusPU(2)
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reduces to the trivialSU(2)-bundle which we denote byP = M × SU(2). Furthermore
the U(2)-connectionBn induces a trivial connection on the determinantalU(1)-bundle,
so it reduces to anSU(2)-connection onP . In our coordinate chartsU± the connection
Bn is induced by the embeddingkR ∼= u(1) ⊂ su(2) ∼= ImH. In other words self-dual
L2 harmonic 2-forms may be regarded as the curvature 2-forms of (reducible) self-dual
Yang–MillsSU(2)-connections given locally by the formula (6).

Using (4) we find that the second Chern numbers of these self-dual Yang–MillsSU(2)-
connectionsBn = An ⊕ A−n on the associatedSU(2)-bundlesHn ⊕ H−n satisfy

− 1

8π2

∫
M

tr(FAn ⊕ FA−n ∧ FAn ⊕ FA−n) = 1

8π2

∫
M

2FAn ∧ FAn = 2n2,

since we have−tr(AB) = 2 Re(xȳ) for the Killing-form on the Lie algebrasu(2) ∼= ImH.
Note that if we calculate the first Pontryagin number of the connectionAn on the real

plane bundleHn (here we made the identificationU(1) ∼= SO(2)), we also find

1

4π2

∫
M

FAn ∧ FAn = 2n2.

In the following section, we prove that the reducibleSU(2)-instantons just derived coincide
with the third group of instantons found by Charap and Duff [2].

3. Identification with instantons of Charap and Duff

Now we will follow [2]. In this paper solutions of type (II) of the self-duality equations
on P are referred to as “non-Abelian dyons” of Pontryagin numbers 2n2. Let us denote
them asÃn. In this section we show that they are in fact reducible, i.e. Abelian connections
and identify them with the connectionsBn defined above. To round things off, we finish
this section by giving the explicit local gauge transformations which identify our Abelian
connections (6) with Charap–Duff’s (8).

Let n be an integer and focus our attention to solution (II), more precisely the self-dual
one, which means that we choose all the functions of positive sign. Putting solution (II) into
the spherical symmetric ansatz (5) of [2] and adjusting notations of [2] to ours via the iden-
tification su(2) ∼= ImH given by{σ 1/2, σ 2/2, σ 3/2} 7→ {i/2, j/2, k/2}, the coordinate
transformation

(τ, x1, x2, x3) 7→ (nτ, r sinΘ cos(nφ), r sinΘ sin(nφ), r cosΘ), (7)

and the notation

qn := sinΘ cos(nφ)i + sinΘ sin(nφ)j + cosΘk,

we get the new form for the self-dual connection

Ãn = n

2

((
c − 1

r

)
dτ + cosΘ dφ

)
qn − n

2
dφ k + 1

2
dΘ(sin(nφ)i − cos(nφ)j).

(8)
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A long but straightforward calculation shows that the curvature takes the form

F
Ãn

= nωqn. (9)

Consider now theU(1)-sub-bundleHn of P whose smooth sections are given bys =
exp(f qn), where exp :su(2) → SU(2) is the exponential map andf is any smooth
function onM. We show that the covariant derivative∇

Ãn
: Ω0(ad(P )) → Ω1(ad(P )) on

the associated bundle ad(P ) leaves the real line bundle ad(Hn) ⊂ ad(P ) invariant. We thus
calculate in our coordinate chartU :

∇
Ãn

s = ∇
Ãn

(f qn) = d(f qn) + [Ãn, f qn],

where by abuse of notatioñAn denotes the connection matrix ofÃn in the gauge (8) The
first term equals:

d(f qn) = df qn + f d(sinΘ cos(nφ)i + sinΘ sin(nφ)j + cosΘk)

= df qn + f dΘ(cosΘ cos(nφ)i + cosΘ sin(nφ)j − sinΘk)

+fndφ(− sinΘ sin(nφ)i + sinΘ cos(nφ)j),

and the second one gives

[Ãn, f qn] =
[
n

2

((
c − 1

r

)
dτ + cosΘ dφ

)
qn − n

2
dφ k

+1

2
dΘ(sin(nφ)i − cos(nφ)j), f qn

]

=
[
−n

2
dφ k + 1

2
dΘ(sin(nφ)i − cos(nφ)j), f qn

]

= fndφ(sinΘ sin(nφ)i − sinΘ cos(nφ)j)

+f dΘ(− cosΘ cos(nφ)i − cosΘ sin(nφ)j + sinΘk).

Adding the two above expressions we see that

∇
Ãn

(f qn) = df qn,

showing thatÃn reduces to aU(1)-connection onHn ⊂ P . Now (9) shows that this
U(1)-connection onHn has the same curvature asAn, therefore they should coincide, in
particularHn

∼= Hn. Thus we proved that the Charap–Duff connection (8) is equivalent to
our connection (6).

We finish this section by writing down the explicit gauge transformations onU± which
transform our connection (6) to Charap–Duff’s (8). From (9) we can guess that the gauge
transformations we are looking for should rotate the vectorqn into the unit vectork. This
transformation cannot be carried out continuously over the wholeS2 by using only one
transformation but there is no obstruction if we use two gauge transformations on the charts
U± which are related alongU+ ∩ U− by an Abelian gauge transformation. Consider the
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gauge transformationsg±
n : U± → SU(2) ∼= S3 ⊂ H given by

g±
n (τ, r, Θ, φ) := exp

(
±k

nφ

2

)
exp

(
−j

Θ

2

)
exp

(
−k

nφ

2

)
.

By abuse of notation we will regard the unit quaternionsi, j , k either elements of the Lie
algebrasu(2) ∼= ImH or of the groupSU(2) ∼= S3 ⊂ H depending on the context.

In this form we only see thatg±
n are smooth gauge transformations onU . In order to be well

defined as smooth mapsg±
n : U± → SU(2) we have to show that they extend analytically

over the appropriate poles. We show this forg+
n here, the case ofg−

n being similar. It is
easily checked that the following gauge transformation in Descartes coordinates gives rise
to g+

n after the coordinate transformation (7):

(
x3

2r
+ 1

2

)−1/2 (
x3

2r
+ 1

2
− i

x2

2r
− j

x3

2r

)
. (10)

In this form we see that the mapg+
n : U → SU(2) extends analytically toU+ \ U , that is

to points ofM, whereΘ = 0 or equivalentlyx3/r = 1.
Let us prove that the above gauge transformations do indeed transform (8) into (6)! First,

we show that it rotatesqn intok: Writing qn = sinΘ cos(nφ)i+sinΘ sin(nφ)j +cosΘk =
exp(knφ) sinΘ i + cosΘk, we can proceed as follows:

g±
n (exp(knφ) sinΘ i + cosΘk)(g±

n )−1

= exp

(
±k

nφ

2

)
exp

(
−j

Θ

2

)
(sinΘ i + cosΘk) exp

(
j
Θ

2

)
exp

(
∓k

nφ

2

)
.

Since sinΘ i + cosΘk = exp(jΘ)k, we can go further by writing

exp

(
±k

nφ

2

)
k exp

(
∓k

nφ

2

)
= k,

proving that the above gauge transformationsg±
n sendqn into k.

Finally we calculate that at one hand

g±
n d(g±

n )−1 = ∓n

2
dφ k + n

2
dφ exp

(
±k

nφ

2

)
exp(−jΘ) exp

(
∓k

nφ

2

)
k

+1

2
dΘ exp(±knφ)j ,

on the other hand

g±
n

(
−n

2
dφ k + 1

2
dΘ(sin(nφ)i − cos(nφ)j)

)
(g±

n )−1

= −n

2
dφ exp

(
±k

nφ

2

)
exp(−jΘ) exp

(
∓k

nφ

2

)
k − 1

2
dΘ exp(±knφ)j .

But these terms cancel each other except∓1
2n dφ k demonstrating the desired result

g±
n Ãn(g

±
n )−1 + g±

n d(g±
n )−1 = A±

n ,
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whereA±
n is given by (6). Note that the two gauge transformations are related alongU+∩U−

by the Abelian gauge transformation

exp(knφ)g−
n = g+

n

yielding againA−
n − kn dφ = A+

n .
Thus we gave two proofs that the Charap–Duff instantons coincide with ours proving

that these solutions are nothing but Abelian dyons carrying magnetic chargen and electric
chargen. Indeed, the electric charge is given by the integration of the electric field over an
embedded two-sphere. By self-duality,

− 1

2π

∫
S2

∗ ω|S2 = 1,

hence it is clear that the general solution has electric chargen too. In summary we see that
the basic characteristic numbers of these solutions are their magnetic chargen represented
by the first Chern class of theU(1)-bundleHn instead of the first Pontryagin number 2n2.

4. L2L2L2-cohomology

In this section, we show that we have found all the Abelian instantons on the Euclidean
Schwarzschild manifold.

Theorem 4.1. Letη be anL2 harmonic form on M. Then it is a linear combination ofdξ

and∗dξ . Consequently, a self-dualL2 harmonic2-form on M is some constant multiple of
ω = dξ + ∗dξ .

Proof. First of all, the volume of(M, g) is infinite. It can be seen by calculating

∫
M

∗ 1 =
∫ 2π

0

∫ π

0

∫ ∞

2m

∫ 8πm

0
r2 sinΘ dτ dr dΘ dφ = ∞,

where we have used again the parameterization of the Euclidean Schwarzschild manifold
given in the previous section. This implies that there are noL2 harmonic 0- or equivalently
4-forms. Now, asM is Ricci-flat and complete, Corollary 1 of Dodziuk [4] implies that
there are no 1- and equivalently 3-forms onM.

It remains to show that anyL2 harmonic 2-form is a linear combination of dξ and
∗dξ . For this we use a recent result of Hitchin, namely [10, Theorem 3] which we cite in
full.

Theorem 4.2(Hitchin). Let M be a complete oriented Riemannian manifold and let G be
a connected Lie group of isometries such that the Killing vector fields X it defines satisfy

|X| ≤ c′ρ(x0, x) + c′′.

Then eachL2 cohomology class is fixed by G.
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(Hereρ is the distance function of the Riemannian manifold.) We would like to apply
this result toM with G ∼= SO(3) acting onM by isometries ofS2. A glance at the metric
(1) assures us that the Killing fields of this action have indeed linear growth. Thus it is
sufficient to find allSO(3)-invariant harmonic 2-forms onM. Let η be such a form. In our
coordinate chartU , it must have the shape

η = f (τ, r) dτ ∧ dr + ατ (τ, r) ∧ dτ + αr(τ, r) ∧ dr + β(τ, r),

wheref (r, τ ) is anSO(3)-invariant function onS2, moreoverατ (τ, r) andαr(τ, r) are
SO(3) invariant 1-forms onS2, and finallyβ(τ, r) is an SO(3)-invariant 2-form onS2.
However, there are very fewSO(3)-invariant forms onS2. Namely, only the constant func-
tions and constant times the volume form of the roundS2 areSO(3)-invariant. It follows
becauseSO(3) acts transitively showing that only the constant functions and equivalently
constant multiples of the volume form are theSO(3)-invariant 0- and 2-forms, respectively.
Moreover there are no non-trivialSO(3)-invariant 1-forms onS2, which could be seen by
looking at the dual vector field and seeing that the action of theU(1) stabilizator of any
point on the tangent space at that point has only the origin as its fixed point.

It follows that ourSO(3)-invariant 2-form must have the form

η = f (τ, r) dτ ∧ dr + h(τ, r) sinΘ dΘ ∧ dφ,

where− sinΘ dΘ ∧ dφ is the volume form of the unitS2 andf (τ, r) andh(τ, r) stand for
a function onM depending only onτ andr. Its Hodge-dual is given by

∗η = h(τ, r)
1

r2
dτ ∧ dr + r2f (τ, r) sinΘ dΘ ∧ dφ.

In order that bothη and∗η be closed, we need that neitherh(r, τ ) nor r2f (r, τ ) depends
on τ or r, which means thatη must have the form

c1

r2
dτ ∧ dr + c2 sinΘ dΘ ∧ dφ

exactly as claimed. The result follows.

5. Concluding remarks

Previously we have proved that the self-dual solutions to theSU(2) Yang–Mills equations
over the Euclidean Schwarzschild manifold found by Charap and Duff correspond to Abelian
dyons rather than non-Abelian ones. From the mathematical point of view we have seen that
the curvatures of these solutions represent elements of the non-trivial second, reducedL2

cohomology group of the Euclidean Schwarzschild manifold. This identification enabled
us to find all the Abelian instantons over this manifold.

The physical interpretation of these solutions is more subtle, however. In light of our
results these solutions seem to describe a static electromagnetic dyon configuration sur-
rounding the Schwarzschild black hole. Accepting this, we can interpret their Pontryagin
numbers 2n2 as their three-dimensional energy rather than their Euclidean action. Indeed, it
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is straightforward that the Euclidean Schwarzschild metric tends to thethree-dimensional
flat metric ofR× S2 and can be extended as the flat metric to the wholeR

3 asm → 0 (i.e.
as the Hawking temperature of the black hole tends to infinity), while neither solutions (6)
nor their Euclidean action depends onm. Henceforth in the limitm → 0, we recover the
static dyon of charge(n, n) on flat space and such a configuration has energy 2n2 as it is
well known.

The general (non-self-dual) dyons of charge(k, n) correspond to the general elements
of the integer latticeZ⊕ Z ⊂ R⊕ ∼= H̄ 2

L2(M, g) in the reducedL2-cohomology group of
(M, g).
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